The role of functional near-infra-red spectroscopy (fNIRS) in early intervention for infants with hearing impairment

> Colette McKay ...and EarGenie team

Bionics

The EarGenie Team

BI TEAM

Dr Julia Wunderlich (Clinical Lead) Dr Darren Mao (Development Engineer) Dr Gautam Balasubramanian (Data Scientist) Dr Demi Gao (Research Engineer) Linty McDonald (Audiologist) Steven Lee (PhD student/Audiologist) Suwana Watt (Audiologist)

DEVELOPMENT/COMMERCIALISATION

NIRGenie company: CEO Dr Jeffry Ng Prototyping partner: Design + Industry

Our aim...closing the gapsbetween identification of hearing loss in an infant and the accurate fitting of the optimal hearing instrument

- Auditory neuropathy...what is my functional hearing like?
 - Sensitivity and discrimination
- All infants...
 - is my hearing aid programmed optimally (sound detection)?
 - and would a cochlear implant be a better option (discrimination)?
- **Cochlear implants...**objective programming and evaluating early programs

What do we need to **fast track** intervention...?

 A <u>reliable</u> and <u>accurate</u> objective test of speech sound detection and discrimination that is

- Reliable for infants with auditory neuropathy
- Suitable for very young infants in the natural sleep state
- Suitable for use in cochlear implants (not affected by electrical artifacts or interference)

Introducing EarGenie The hearing assessment system that uses fNIRS

Speech Detection and Discrimination

Standard block: BaBaBaBaBaBa

Repeated Ba baseline

Novel block: CBaCBaCBaCBa

C = Contrast speech sound to be tested

In each test run, C is pseudorandomised within a set of 3 contrasts.

Set 1 contrast sounds: Tea/Ba, Bee/Ba, Ga/Ba

Set 2 contrast sounds: Tea/Ba, Pa/Ba, Ma/Ba

Detection response 65 dB SPL (n = 16, normal hearing)

Lee, Mao, Wunderlich, Balasubramanian, Haneman, Korneev, McKay (2023) Under review TIH Two independent response mechanisms to auditory stimuli measured with fNIRS in sleeping infants.

Two independent and concurrent responses to auditory stimuli (N = 16, normal hearing)

Grand average of reconstructed ICA components (All epochs and channels used)

Bionics

Why do we think it is a brain arousal response?

- McNamara et al J Appl Physiol (1998) (sleeping infants) tactile stimulus induced cortical arousal
- Cortical arousal defined as a sudden change in alpha activity
- Cortical arousal rapidly habituated with repeated stimuli

- > Nasi et al, PLoS ONE 2012 (sleeping adults)
- Cyclic Alternating Patterns A-B occur in non-REM sleep.
- > A1: Cluster of high amplitude alpha activity
- A2:transient high amplitude activity
- A3: transient high amplitude activity with desynchronization
- ➢ B: following A
- FNIRS epoched at starts of A phases

Näsi T, Virtanen J, Toppila J, Salmi T, Ilmoniemi RJ (2012) Cyclic Alternating Pattern Is Associated with Cerebral Hemodynamic Variation: A Near-Infrared Spectroscopy Study of Sleep in Healthy Humans. PLoS ONE 7(10): e46899. https://doi.org/10.1371/journal.pone.0046899

...and another physiological response to hearing sounds

- Rapidly habituates (similarly to arousal response)
- Is only reliably measurable at higher intensities in normal hearing babies (>= 65 dBSPL)

Bionics

Institute

Lee, O.W., et al.. (2023) "The use of heart rate responses extracted from functional near-infrared spectroscopy data as a measure of speech discrimination ability in sleeping infants," Ear Hear 44(4):776-786

Discrimination response "Ba" versus "Tea", "Bee", and "Ga" at 65 dBSPL

- Arousal sensitive to degree of contrast
- Positive acoustic component is broader and has longer peak latency than the detection response

Bionics Institute

Effect of stimulus level on fNIRS response

Bionics Institute

Summary of fNIRS response characteristics in sleeping infants

Auditory: latency and duration are affected by sound intensity or discrimination contrast

Brain Arousal: rapidly habituates Size is affected by sound intensity and discrimination contrast

Bionics

An automatic analysis method that is reliable and accurate in individual infants

- Needs to be able to automatically detect non-stationary responses with differing morphology
- A brief overview (patent protected)
 - Standard pre-processing steps to clean the signal and convert light intensities to HbO and HbR
 - A stochastic process captures the unique statistical properties of neural responses, illustrating neighborhood covariance relative to stimulus onset across a series of post-stimulus responses spanning the expected response lengths
 - Statistical significance is established by comparing the derived neural stochastic process against arbitrary baseline signals (from silence period or non-silence baseline).
 - To assess the probability of a false positive for that infant/ROI, control baseline signals are compared to each other using the same statistical process

Accuracy analysis in individual infants (normal hearing)

Specificity 95% (calculated across multiple control versus control tests in around 40 infants i.e. false positive estimate = 5%)

Secondary false positive check: control versus "0 dB SPL stimulus" 14 trials, no false positives

Detection:

Sensitivity

65 dB SPL 97-100% (28/29 infant tests) Other levels 35 dB SPL to 90 dB SPL 100% (38 tests in all 5-8 tests per level)

Discrimination:

Ba/Tea 65 dBSPL 15/16 infants (94%) Ba/Bee 65-75 dBSPL 30/33 infants (91%) Ba/Bee 35-50 dBSPL 20/21 infants (95%) Ba/Ga 65 dB SPL 14/16 infants (88%)

Example: infant (6m) with moderate hearing loss: Aided condition at 65 dBSPL: Detection responses

Algorithm says "Yes, detected"

Average over first 4 epochs

Note dominance of arousal response at start

Example: infant (6m) with moderate hearing loss: Aided condition at 65 dBSPL: Discrimination responses

Average over 20 epochs

Note delayed positive peaks. Algorithm confirms discrimination of all contrasts

Example: infant (bilateral severe/profound loss 5m and repeat 9m): aided condition at 65 dB SPL

Detection responses at 5 months

Developing a clinically easy system ...ready for clinical testing September 2023

Wireless connection

Automatic analysis and report

Baby-friendly head gear with fixed montage

Clinician friendly user interface

www.bionicsinstitute.org